Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Experimental neuroscience techniques are advancing rapidly, with major recent developments in high-density electrophysiology and targeted electrical stimulation. In combination with these techniques, cortical organoids derived from pluripotent stem cells show great promise asin vitromodels of brain development and function. Although sensory input is vital to neurodevelopmentin vivo, few studies have explored the effect of meaningful input toin vitroneural cultures over time. In this work, we demonstrate the first example of goal-directed learning in brain organoids. We developed a closed-loop electrophysiology framework to embody mouse cortical organoids into a simulated dynamical task (the inverted pendulum problem known as ‘Cartpole’) and evaluate learning through high-frequency training signals. Longitudinal experiments enabled by this framework illuminate how different methods of selecting training signals enable improvement on the tasks. We found that for most organoids, training signals chosen by artificial reinforcement learning yield better performance on the task than randomly chosen training signals or the absence of a training signal. This systematic approach to studying learning mechanismsin vitroopens new possibilities for therapeutic interventions and biological computation.more » « lessFree, publicly-accessible full text available December 12, 2025
-
ABSTRACT The considerably slow pace of human brain development correlates with an evolutionary increase in brain size, cell numbers, and expansion of neuronal structures, with axon tracts undergoing an even greater evolutionary increase than other neuronal domains. However, whether tempo is responsible for these differences in magnitude, and how, remains to be determined. Here, we used brain organoids to investigate this and observed that human axon tracts spend more time growing and extend farther compared to those of mice, independent of their tissue environment. Single cell RNA sequencing analysis pointed to a subset of calcium-permeable ion channels expressed throughout neuron development, including during axon tract outgrowth. Calcium imaging during early neuron development consistently revealed a reduced calcium influx in human neurons compared to mouse neurons. Stimulating calcium influx and increasing cAMP levels resulted in premature halting of axon tract outgrowth and shorter axon tracts, mimicking the mouse phenotype, while abrogating calcium influx led to an even longer phase of axon tract outgrowth and longer axon tracts in humans. Thus, evolutionary differences in calcium regulation set the tempo of neuronal development, by extending the time window to foster the more elaborated human neuron morphology.more » « lessFree, publicly-accessible full text available December 28, 2025
-
SUMMARY Electrophysiology offers a high-resolution method for real-time measurement of neural activity. Longitudinal recordings from high-density microelectrode arrays (HD-MEAs) can be of considerable size for local storage and of substantial complexity for extracting neural features and network dynamics. Analysis is often demanding due to the need for multiple software tools with different runtime dependencies. To address these challenges, we developed an open-source cloud-based pipeline to store, analyze, and visualize neuronal electrophysiology recordings from HD-MEAs. This pipeline is dependency agnostic by utilizing cloud storage, cloud computing resources, and an Internet of Things messaging protocol. We containerized the services and algorithms to serve as scalable and flexible building blocks within the pipeline. In this paper, we applied this pipeline on two types of cultures, cortical organoids andex vivobrain slice recordings to show that this pipeline simplifies the data analysis process and facilitates understanding neuronal activity.more » « lessFree, publicly-accessible full text available November 14, 2025
-
Free, publicly-accessible full text available November 15, 2025
-
Abstract The analysis of tissue cultures, particularly brain organoids, requires a sophisticated integration and coordination of multiple technologies for monitoring and measuring. We have developed an automated research platform enabling independent devices to achieve collaborative objectives for feedback-driven cell culture studies. Our approach enables continuous, communicative, non-invasive interactions within an Internet of Things (IoT) architecture among various sensing and actuation devices, achieving precisely timed control ofin vitrobiological experiments. The framework integrates microfluidics, electrophysiology, and imaging devices to maintain cerebral cortex organoids while measuring their neuronal activity. The organoids are cultured in custom, 3D-printed chambers affixed to commercial microelectrode arrays. Periodic feeding is achieved using programmable microfluidic pumps. We developed a computer vision fluid volume estimator used as feedback to rectify deviations in microfluidic perfusion during media feeding/aspiration cycles. We validated the system with a set of 7-day studies of mouse cerebral cortex organoids, comparing manual and automated protocols. The automated protocols were validated in maintaining robust neural activity throughout the experiment. The automated system enabled hourly electrophysiology recordings for the 7-day studies. Median neural unit firing rates increased for every sample and dynamic patterns of organoid firing rates were revealed by high-frequency recordings. Surprisingly, feeding did not affect firing rate. Furthermore, performing media exchange during a recording showed no acute effects on firing rate, enabling the use of this automated platform for reagent screening studies.more » « less
-
Abstract Simultaneous longitudinal imaging across multiple conditions and replicates has been crucial for scientific studies aiming to understand biological processes and disease. Yet, imaging systems capable of accomplishing these tasks are economically unattainable for most academic and teaching laboratories around the world. Here, we propose the Picroscope, which is the first low-cost system for simultaneous longitudinal biological imaging made primarily using off-the-shelf and 3D-printed materials. The Picroscope is compatible with standard 24-well cell culture plates and captures 3D z-stack image data. The Picroscope can be controlled remotely, allowing for automatic imaging with minimal intervention from the investigator. Here, we use this system in a range of applications. We gathered longitudinal whole organism image data for frogs, zebrafish, and planaria worms. We also gathered image data inside an incubator to observe 2D monolayers and 3D mammalian tissue culture models. Using this tool, we can measure the behavior of entire organisms or individual cells over long-time periods.more » « less
-
Abstract Objective.Neural activity represents a functional readout of neurons that is increasingly important to monitor in a wide range of experiments. Extracellular recordings have emerged as a powerful technique for measuring neural activity because these methods do not lead to the destruction or degradation of the cells being measured. Current approaches to electrophysiology have a low throughput of experiments due to manual supervision and expensive equipment. This bottleneck limits broader inferences that can be achieved with numerous long-term recorded samples.Approach.We developed Piphys, an inexpensive open source neurophysiological recording platform that consists of both hardware and software. It is easily accessed and controlled via a standard web interface through Internet of Things (IoT) protocols.Main results.We used a Raspberry Pi as the primary processing device along with an Intan bioamplifier. We designed a hardware expansion circuit board and software to enable voltage sampling and user interaction. This standalone system was validated with primary human neurons, showing reliability in collecting neural activity in near real-time.Significance.The hardware modules and cloud software allow for remote control of neural recording experiments as well as horizontal scalability, enabling long-term observations of development, organization, and neural activity at scale.more » « less
An official website of the United States government
